optuna.visualization._intermediate_values 源代码
from optuna.logging import get_logger
from optuna.study import Study
from optuna.trial import TrialState
from optuna.visualization._plotly_imports import _imports
if _imports.is_successful():
from optuna.visualization._plotly_imports import go
_logger = get_logger(__name__)
[文档]def plot_intermediate_values(study: Study) -> "go.Figure":
"""Plot intermediate values of all trials in a study.
Example:
The following code snippet shows how to plot intermediate values.
.. testcode::
import optuna
def f(x):
return (x - 2) ** 2
def df(x):
return 2 * x - 4
def objective(trial):
lr = trial.suggest_loguniform("lr", 1e-5, 1e-1)
x = 3
for step in range(128):
y = f(x)
trial.report(y, step=step)
if trial.should_prune():
raise optuna.TrialPruned()
gy = df(x)
x -= gy * lr
return y
study = optuna.create_study()
study.optimize(objective, n_trials=16)
optuna.visualization.plot_intermediate_values(study)
.. raw:: html
<iframe src="../_static/plot_intermediate_values.html"
width="100%" height="500px" frameborder="0">
</iframe>
Args:
study:
A :class:`~optuna.study.Study` object whose trials are plotted for their intermediate
values.
Returns:
A :class:`plotly.graph_objs.Figure` object.
"""
_imports.check()
return _get_intermediate_plot(study)
def _get_intermediate_plot(study: Study) -> "go.Figure":
layout = go.Layout(
title="Intermediate Values Plot",
xaxis={"title": "Step"},
yaxis={"title": "Intermediate Value"},
showlegend=False,
)
target_state = [TrialState.PRUNED, TrialState.COMPLETE, TrialState.RUNNING]
trials = [trial for trial in study.trials if trial.state in target_state]
if len(trials) == 0:
_logger.warning("Study instance does not contain trials.")
return go.Figure(data=[], layout=layout)
traces = []
for trial in trials:
if trial.intermediate_values:
sorted_intermediate_values = sorted(trial.intermediate_values.items())
trace = go.Scatter(
x=tuple((x for x, _ in sorted_intermediate_values)),
y=tuple((y for _, y in sorted_intermediate_values)),
mode="lines+markers",
marker={"maxdisplayed": 10},
name="Trial{}".format(trial.number),
)
traces.append(trace)
if not traces:
_logger.warning(
"You need to set up the pruning feature to utilize `plot_intermediate_values()`"
)
return go.Figure(data=[], layout=layout)
figure = go.Figure(data=traces, layout=layout)
return figure