optuna.samplers._random 源代码

import numpy

from optuna import distributions
from optuna.samplers import BaseSampler
from optuna import type_checking

if type_checking.TYPE_CHECKING:
    from typing import Any  # NOQA
    from typing import Dict  # NOQA
    from typing import Optional  # NOQA

    from optuna.distributions import BaseDistribution  # NOQA
    from optuna.study import Study  # NOQA
    from optuna.trial import FrozenTrial  # NOQA


[文档]class RandomSampler(BaseSampler): """Sampler using random sampling. This sampler is based on *independent sampling*. See also :class:`~optuna.samplers.BaseSampler` for more details of 'independent sampling'. Example: .. testcode:: import optuna from optuna.samplers import RandomSampler def objective(trial): x = trial.suggest_uniform('x', -5, 5) return x**2 study = optuna.create_study(sampler=RandomSampler()) study.optimize(objective, n_trials=10) Args: seed: Seed for random number generator. """ def __init__(self, seed=None): # type: (Optional[int]) -> None self._rng = numpy.random.RandomState(seed)
[文档] def reseed_rng(self) -> None: self._rng = numpy.random.RandomState()
def infer_relative_search_space(self, study, trial): # type: (Study, FrozenTrial) -> Dict[str, BaseDistribution] return {} def sample_relative(self, study, trial, search_space): # type: (Study, FrozenTrial, Dict[str, BaseDistribution]) -> Dict[str, Any] return {} def sample_independent(self, study, trial, param_name, param_distribution): # type: (Study, FrozenTrial, str, distributions.BaseDistribution) -> Any if isinstance(param_distribution, distributions.UniformDistribution): return self._rng.uniform(param_distribution.low, param_distribution.high) elif isinstance(param_distribution, distributions.LogUniformDistribution): log_low = numpy.log(param_distribution.low) log_high = numpy.log(param_distribution.high) return float(numpy.exp(self._rng.uniform(log_low, log_high))) elif isinstance(param_distribution, distributions.DiscreteUniformDistribution): q = param_distribution.q r = param_distribution.high - param_distribution.low # [low, high] is shifted to [0, r] to align sampled values at regular intervals. low = 0 - 0.5 * q high = r + 0.5 * q s = self._rng.uniform(low, high) v = numpy.round(s / q) * q + param_distribution.low # v may slightly exceed range due to round-off errors. return float(min(max(v, param_distribution.low), param_distribution.high)) elif isinstance(param_distribution, distributions.IntUniformDistribution): # [low, high] is shifted to [0, r] to align sampled values at regular intervals. r = (param_distribution.high - param_distribution.low) / param_distribution.step # numpy.random.randint includes low but excludes high. s = self._rng.randint(0, r + 1) v = s * param_distribution.step + param_distribution.low return int(v) elif isinstance(param_distribution, distributions.IntLogUniformDistribution): log_low = numpy.log(param_distribution.low - 0.5) log_high = numpy.log(param_distribution.high + 0.5) s = numpy.exp(self._rng.uniform(log_low, log_high)) v = ( numpy.round((s - param_distribution.low) / param_distribution.step) * param_distribution.step + param_distribution.low ) return int(min(max(v, param_distribution.low), param_distribution.high)) elif isinstance(param_distribution, distributions.CategoricalDistribution): choices = param_distribution.choices index = self._rng.randint(0, len(choices)) return choices[index] else: raise NotImplementedError