optuna.pruners._median 源代码
from optuna.pruners._percentile import PercentilePruner
[文档]class MedianPruner(PercentilePruner):
"""Pruner using the median stopping rule.
Prune if the trial's best intermediate result is worse than median of intermediate results of
previous trials at the same step.
Example:
We minimize an objective function with the median stopping rule.
.. testcode::
import numpy as np
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import train_test_split
import optuna
X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)
classes = np.unique(y)
def objective(trial):
alpha = trial.suggest_uniform('alpha', 0.0, 1.0)
clf = SGDClassifier(alpha=alpha)
n_train_iter = 100
for step in range(n_train_iter):
clf.partial_fit(X_train, y_train, classes=classes)
intermediate_value = clf.score(X_valid, y_valid)
trial.report(intermediate_value, step)
if trial.should_prune():
raise optuna.TrialPruned()
return clf.score(X_valid, y_valid)
study = optuna.create_study(direction='maximize',
pruner=optuna.pruners.MedianPruner(n_startup_trials=5,
n_warmup_steps=30,
interval_steps=10))
study.optimize(objective, n_trials=20)
Args:
n_startup_trials:
Pruning is disabled until the given number of trials finish in the same study.
n_warmup_steps:
Pruning is disabled until the trial exceeds the given number of step.
interval_steps:
Interval in number of steps between the pruning checks, offset by the warmup steps.
If no value has been reported at the time of a pruning check, that particular check
will be postponed until a value is reported.
"""
def __init__(self, n_startup_trials=5, n_warmup_steps=0, interval_steps=1):
# type: (int, int, int) -> None
super(MedianPruner, self).__init__(50.0, n_startup_trials, n_warmup_steps, interval_steps)