optuna.pruners._median 源代码
from optuna.pruners._percentile import PercentilePruner
[文档]class MedianPruner(PercentilePruner):
    """Pruner using the median stopping rule.
    Prune if the trial's best intermediate result is worse than median of intermediate results of
    previous trials at the same step.
    Example:
        We minimize an objective function with the median stopping rule.
        .. testcode::
            import numpy as np
            from sklearn.datasets import load_iris
            from sklearn.linear_model import SGDClassifier
            from sklearn.model_selection import train_test_split
            import optuna
            X, y = load_iris(return_X_y=True)
            X_train, X_valid, y_train, y_valid = train_test_split(X, y)
            classes = np.unique(y)
            def objective(trial):
                alpha = trial.suggest_uniform('alpha', 0.0, 1.0)
                clf = SGDClassifier(alpha=alpha)
                n_train_iter = 100
                for step in range(n_train_iter):
                    clf.partial_fit(X_train, y_train, classes=classes)
                    intermediate_value = clf.score(X_valid, y_valid)
                    trial.report(intermediate_value, step)
                    if trial.should_prune():
                        raise optuna.TrialPruned()
                return clf.score(X_valid, y_valid)
            study = optuna.create_study(direction='maximize',
                                        pruner=optuna.pruners.MedianPruner(n_startup_trials=5,
                                                                           n_warmup_steps=30,
                                                                           interval_steps=10))
            study.optimize(objective, n_trials=20)
    Args:
        n_startup_trials:
            Pruning is disabled until the given number of trials finish in the same study.
        n_warmup_steps:
            Pruning is disabled until the trial exceeds the given number of step.
        interval_steps:
            Interval in number of steps between the pruning checks, offset by the warmup steps.
            If no value has been reported at the time of a pruning check, that particular check
            will be postponed until a value is reported.
    """
    def __init__(self, n_startup_trials=5, n_warmup_steps=0, interval_steps=1):
        # type: (int, int, int) -> None
        super(MedianPruner, self).__init__(50.0, n_startup_trials, n_warmup_steps, interval_steps)