optuna.integration.pytorch_lightning 源代码

import optuna

if optuna.type_checking.TYPE_CHECKING:
    from typing import Dict  # NOQA
    from typing import Optional  # NOQA

with optuna._imports.try_import() as _imports:
    from pytorch_lightning.callbacks import EarlyStopping
    from pytorch_lightning import LightningModule
    from pytorch_lightning import Trainer

if not _imports.is_successful():
    EarlyStopping = object  # NOQA


[文档]class PyTorchLightningPruningCallback(EarlyStopping): """PyTorch Lightning callback to prune unpromising trials. See `the example <https://github.com/optuna/optuna/blob/master/ examples/pytorch_lightning_simple.py>`__ if you want to add a pruning callback which observes accuracy. Args: trial: A :class:`~optuna.trial.Trial` corresponding to the current evaluation of the objective function. monitor: An evaluation metric for pruning, e.g., ``val_loss`` or ``val_acc``. The metrics are obtained from the returned dictionaries from e.g. ``pytorch_lightning.LightningModule.training_step`` or ``pytorch_lightning.LightningModule.validation_end`` and the names thus depend on how this dictionary is formatted. """ def __init__(self, trial, monitor): # type: (optuna.trial.Trial, str) -> None _imports.check() super(PyTorchLightningPruningCallback, self).__init__(monitor=monitor) self._trial = trial self._monitor = monitor def on_epoch_end(self, trainer, pl_module): # type: (Trainer, LightningModule) -> None logs = trainer.callback_metrics epoch = pl_module.current_epoch current_score = logs.get(self._monitor) if current_score is None: return self._trial.report(current_score, step=epoch) if self._trial.should_prune(): message = "Trial was pruned at epoch {}.".format(epoch) raise optuna.TrialPruned(message)